A Scorpion Venom Peptide BMKN2 With Potent Antiviral Activity Against Therapeutic Targets of Sars-Cov-2: An In-Silico Study

Authors

  • Prabha Mariam Joseph Department of Zoology, St. Berchmans College(Autonomous), Changanassery, Kerala
  • Philip Litto Thomas Associate Professor in Zoology Department of Zoology, St. Berchmans College (Autonomous), Changanaserry, Mahatma Gandhi University Kerala

Keywords:

Scorpion Venom Peptide, BmKn2, SARS- CoV-2

Abstract

The recently described Corona Virus Disease 2019 (COVID-19) caused by Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2) infected over 124 million people, resulted in the death of more than, 2.73 million and made chaos among the social and economic status of various countries. There are no antiviral drugs with proven clinical efficacy for the treatment of COVID-19, nor are there any vaccines that prevent infection with SARS-CoV-2. This study focused on investigating the efficacy of selected scorpion Venom Peptides as ligands against the potential targets of SARS-CoV-2.

BmKn2, Ctry2801, Hp1090, and Mucroporin 1 from different species of scorpions were chosen as the ligands for this study. Vital proteins of SARS-CoV-2 viz., Spike Glycoprotein, Nucleocapsid Protein, Main Protease (M Pro), Papain Like Protease (PL Pro), and RNA dependent RNA polymerase (RdRp) which play requisite roles in the infection pathway were selected as desirable drug targets. Molecular docking techniques were employed to determine the binding characteristics of viral protein targets with the venom peptides. The receptor-ligand binding affinities resulting from their docking were calculated and the most probable interactions between the ligands and their receptors were found out. Based on this study, we identified the venom peptide BmKn2, as the most potential molecule that can block the vital proteins of SARS-CoV-2.

Downloads

Download data is not yet available.

Downloads

Published

2024-05-08

How to Cite

Joseph, P. M., & Thomas, P. L. (2024). A Scorpion Venom Peptide BMKN2 With Potent Antiviral Activity Against Therapeutic Targets of Sars-Cov-2: An In-Silico Study. Chetana: An Ivanian Journal for Scientific Research, 1(1), 20–25. Retrieved from https://marivanioscollegejournals.com/index.php/chetana/article/view/42

Issue

Section

Articles

References

Kumar A, Choudhir G, Shukla SK, et al. Identification of phytochemical inhibitors against main protease of COVID-19 using molecular modeling approaches. J Biomol Struct Dyn. 2020;0(0):000. doi:10.1080/07391102.2020.1772112

Pennington MW, Czerwinski A, Norton RS. Peptide therapeutics from venom: Current status and potential. Bioorganic Med Chem. 2018;26(10):2738-2758. doi:10.1016/j.bmc.2017.09.029

Chippaux JP, Goyffon M. Epidemiology of scorpionism: A global appraisal. Acta Trop. 2008;107(2):71-79. doi:10.1016/j. actatropica.2008.05.021

Hmed B, Serria HT, Mounir ZK. Scorpion peptides: Potential use for new drug development. J Toxicol. 2013;2013. doi:10.1155/2013/958797

Li Q, Zhao Z, Zhou D, et al. Virucidal activity of a scorpion venom peptide variant mucroporin-M1 against measles, SARS-CoV and influenza H5N1 viruses. Peptides. 2011;32(7):1518-1525. doi:10.1016/j.peptides.2011.05.015

Yan R, Zhao Z, He Y, et al. A new natural α-helical peptide from the venom of the scorpion Heterometrus petersii kills HCV. Peptides. 2011;32(1):11-19. doi:10.1016/j.peptides.2010.10.008

Hong W, Li T, Song Y, et al. Inhibitory activity and mechanism of two scorpion venom peptides against herpes simplex virus type 1. Antiviral Res. 2014;102(1):1-10. doi:10.1016/j. antiviral.2013.11.013

Cao L, Dai C, Li Z, et al. Antibacterial activity and mechanism of a Scorpion venom peptide derivative in vitro and in vivo. PLoS One. 2012;7(7). doi:10.1371/journal.pone.0040135

De La Salud Bea R, Petraglia AF, De Johnson LEL. Synthesis, antimicrobial activity and toxicity of analogs of the scorpion venom BmKn peptides. Toxicon. 2015;101:79-84. doi:10.1016/j. toxicon.2015.05.006

Collins AR, Knobler RL, Powell H, Buchmeier MJ. Monoclonal antibodies to murine hepatitis virus-4 (strain JHM) define the viral glycoprotein responsible for attachment and cell- cell fusion. Virology. 1982;119(2):358-371. doi:10.1016/0042- 6822(82)90095-2

Lan J, Ge J, Yu J, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature. 2020;581(7807):215-220. doi:10.1038/s41586-020-2180-5

Cascarina SM, Ross ED. A proposed role for the SARS-CoV-2 nucleocapsid protein in the formation and regulation of biomolecular condensates. FASEB J. 2020;(May):1-11. doi:10.1096/fj.202001351

Zhang S, Zhong N, Xue F, et al. Three-dimensional domain swapping as a mechanism to lock the active conformation in a super-active octamer of SARS-CoV main protease. Protein Cell. 2010;1(4):371-383. doi:10.1007/s13238-010-0044-8

DZIF. COVID 19 target. 2020;3405(March):1-9. doi:10.1126/ science.abb3405

Jin Z, Du X, Xu Y, et al. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature. 2020;582(7811):289-293. doi:10.1038/s41586-020-2223-y

Harcourt BH, Jukneliene D, Kanjanahaluethai A, et al. Identification of Severe Acute Respiratory Syndrome Coronavirus Replicase Products and Characterization of Papain-Like Protease Activity. J Virol. 2004;78(24):13600- 13612. doi:10.1128/jvi.78.24.13600-13612.2004

Yang X, Chen X, Bian G, et al. Proteolytic processing, deubiquitinase and interferon antagonist activities of Middle East respiratory syndrome coronavirus papain-like protease. J Gen Virol. 2014;95(PART3):614-626. doi:10.1099/vir.0.059014-0

Mielech AM, Kilianski A, Baez-Santos YM, Mesecar AD, Baker SC. MERS-CoV papain-like protease has deISGylating and deubiquitinating activities. Virology. 2014;450-451:64-70. doi:10.1016/j.virol.2013.11.040

Ziebuhr J. The coronavirus replicase. Curr Top Microbiol Immunol. 2005;287:57-94. doi:10.1007/3-540-26765-4_3

Pachetti M, Marini B, Benedetti F, et al. Emerging SARS-CoV-2 mutation hot spots include a novel RNA-dependent-RNA polymerase variant. J Transl Med. 2020;18(1):1-9. doi:10.1186/ s12967-020-02344-6

Elfiky AA. SARS-CoV-2 RNA dependent RNA polymerase (RdRp) targeting: an in silico perspective. J Biomol Struct Dyn. 2020;0(0):000. doi:10.1080/07391102.2020.1761882

Wang Q, Wu J, Wang H, et al. Structural Basis for RNA Replication by the SARS-CoV-2 Polymerase. Cell. 2020. doi:10.1016/j. cell.2020.05.034